A layer-wise fusion network incorporating self-supervised learning for multimodal MR image synthesis

Author:

Zhou Qian,Zou Hua

Abstract

Magnetic resonance (MR) imaging plays an important role in medical diagnosis and treatment; different modalities of MR images can provide rich and complementary information to improve the accuracy of diagnosis. However, due to the limitations of scanning time and medical conditions, certain modalities of MR may be unavailable or of low quality in clinical practice. In this study, we propose a new multimodal MR image synthesis network to generate missing MR images. The proposed model comprises three stages: feature extraction, feature fusion, and image generation. During feature extraction, 2D and 3D self-supervised pretext tasks are introduced to pre-train the backbone for better representations of each modality. Then, a channel attention mechanism is used when fusing features so that the network can adaptively weigh different fusion operations to learn common representations of all modalities. Finally, a generative adversarial network is considered as the basic framework to generate images, in which a feature-level edge information loss is combined with the pixel-wise loss to ensure consistency between the synthesized and real images in terms of anatomical characteristics. 2D and 3D self-supervised pre-training can have better performance on feature extraction to retain more details in the synthetic images. Moreover, the proposed multimodal attention feature fusion block (MAFFB) in the well-designed layer-wise fusion strategy can model both common and unique information in all modalities, consistent with the clinical analysis. We also perform an interpretability analysis to confirm the rationality and effectiveness of our method. The experimental results demonstrate that our method can be applied in both single-modal and multimodal synthesis with high robustness and outperforms other state-of-the-art approaches objectively and subjectively.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Reference45 articles.

1. A novel method of multimodal medical image fusion based on hybrid approach of nsct and dtcwt;Alseelawi;Int. J. Onl. Eng.,2022

2. Medical image segmentation on mri images with missing modalities: A review;Azad,2022

3. Image steganography algorithm based on image colorization;Bi,2021

4. A learnable variational model for joint multimodal mri reconstruction and synthesis;Bian,2022

5. A computational approach to edge detection;Canny;IEEE Trans. Pattern Anal. Mach. Intell.,1986

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3