GADTI: Graph Autoencoder Approach for DTI Prediction From Heterogeneous Network

Author:

Liu Zhixian,Chen Qingfeng,Lan Wei,Pan Haiming,Hao Xinkun,Pan Shirui

Abstract

Identifying drug–target interaction (DTI) is the basis for drug development. However, the method of using biochemical experiments to discover drug-target interactions has low coverage and high costs. Many computational methods have been developed to predict potential drug-target interactions based on known drug-target interactions, but the accuracy of these methods still needs to be improved. In this article, a graph autoencoder approach for DTI prediction (GADTI) was proposed to discover potential interactions between drugs and targets using a heterogeneous network, which integrates diverse drug-related and target-related datasets. Its encoder consists of two components: a graph convolutional network (GCN) and a random walk with restart (RWR). And the decoder is DistMult, a matrix factorization model, using embedding vectors from encoder to discover potential DTIs. The combination of GCN and RWR can provide nodes with more information through a larger neighborhood, and it can also avoid over-smoothing and computational complexity caused by multi-layer message passing. Based on the 10-fold cross-validation, we conduct three experiments in different scenarios. The results show that GADTI is superior to the baseline methods in both the area under the receiver operator characteristic curve and the area under the precision–recall curve. In addition, based on the latest Drugbank dataset (V5.1.8), the case study shows that 54.8% of new approved DTIs are predicted by GADTI.

Publisher

Frontiers Media SA

Subject

Genetics(clinical),Genetics,Molecular Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3