Exploring milk loss and variability during environmental perturbations across lactation stages as resilience indicators in Holstein cattle

Author:

Wang Ao,Brito Luiz F.,Zhang Hailiang,Shi Rui,Zhu Lei,Liu Dengke,Guo Gang,Wang Yachun

Abstract

Genetic selection for resilience is essential to improve the long-term sustainability of the dairy cattle industry, especially the ability of cows to maintain their level of production when exposed to environmental disturbances. Recording of daily milk yield provides an opportunity to develop resilience indicators based on milk losses and fluctuations in daily milk yield caused by environmental disturbances. In this context, our study aimed to explore milk loss traits and measures of variability in daily milk yield, including log-transformed standard deviation of milk deviations (Lnsd), lag-1 autocorrelation (Ra), and skewness of the deviations (Ske), as indicators of general resilience in dairy cows. The unperturbed dynamics of milk yield as well as milk loss were predicted using an iterative procedure of lactation curve modeling. Milk fluctuations were defined as a period of at least 10 successive days of negative deviations in which milk yield dropped at least once below 90% of the expected values. Genetic parameters of these indicators and their genetic correlation with economically important traits were estimated using single-trait and bivariate animal models and 8,935 lactations (after quality control) from 6,816 Chinese Holstein cows. In general, cows experienced an average of 3.73 environmental disturbances with a milk loss of 267 kg of milk per lactation. Each fluctuation lasted for 19.80 ± 11.46 days. Milk loss traits are heritable with heritability estimates ranging from 0.004 to 0.061. The heritabilities differed between Lnsd (0.135–0.250), Ra (0.008–0.058), and Ske (0.001–0.075), with the highest heritability estimate of 0.250 ± 0.020 for Lnsd when removing the first and last 10 days in milk in a lactation (Lnsd2). Based on moderate to high genetic correlations, lower Lnsd2 is associated with less milk losses, better reproductive performance, and lower disease incidence. These findings indicate that among the variables evaluated, Lnsd2 is the most promising indicator for breeding for improved resilience in Holstein cattle.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3