Exome sequence analysis identifies a homozygous, pathogenic, frameshift variant in the MAN2B1 gene underlying clinical variant of α-mannosidosis

Author:

Hashmi Jamil Amjad,Latif Muhammad,Balahmar Reham M.,Ali Muhammad Zeeshan,Alfadhli Fatima,Khan Muzammil Ahmad,Basit Sulman

Abstract

Backgroundα-mannosidosis (MAN) is a rare genetic condition that segregates in an autosomal recessive manner. Lack of lysosomal alpha-mannosidase is the underlying cause of the disease. Symptoms of the disease gradually worsen with the age. Newborns are usually asymptomatic, however, some cases are reported with either congenital ankle equinus or hydrocephalus during the first year. Primary symptoms are characterized by immune deficiency, hearing loss, skeletal abnormalities, progressive mental, motor and speech functions’ impairment followed by facial asymmetry.MethodsWe studied two Saudi families (A and B) with bilateral moderate hearing loss (family A) and clubfoot with glaucoma (family B). Clinical diagnosis was not reached based on phenotype of patients. Therefore, hypothesis-free whole exome sequencing (WES) was performed on DNA samples from affected individuals of both the families, followed by Sanger sequencing and segregation analysis to validate the segregation of the identified variant. Furthermore, 3D protein modelling was performed to determine the in silico effects of the identified variant on the protein structure and function.ResultsRe-examination of clinical features revealed that the patients in family A have speech delay and hearing impairment along with craniostenosis, whereas the patients from family B have only clubfoot and glaucoma. WES identified a well known pathogenic homozygous frameshift variant (NM_000528.4: c.2402dupG; p.S802fs*129) in MAN2B1 in both the families. Sanger sequencing confirmed the segregation of the variant with the disease phenotype in both the families. 3D structural modeling of the MAN2B1 protein revealed significant changes in the tertiary structure of the mutant protein, which would affect enzyme function. This report presents a new case where partial and novel α-mannosidosis phenotypes are associated with a MAN2B1 gene pathogenic variant.ConclusionPatients in both the families have manifested peculiar set of clinical symptoms associated with α-mannosidosis. Family A manifested partial clinical symptoms missing several characteristic features like intellectual disability, dysmorphic features, neurological and abdominal manifestations, whereas family B has no reported clinical symptoms related to α-mannosidosis except the novel symptoms including club foot and glaucoma which has never been reported earlier The current findings support the evidence that biallelic variants of MAN2B1 are associated with new clinical variants of α-mannosidosis.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3