Identification of runs of homozygosity associated with male fertility in Italian Brown Swiss cattle

Author:

Pacheco Hendyel A.,Rossoni Attilio,Cecchinato Alessio,Peñagaricano Francisco

Abstract

Intensive selection for improved productivity has been accompanied by an increase in inbreeding rates and a reduction in genetic diversity. The increase in inbreeding tends to impact performance, especially fitness-related traits such as male fertility. Inbreeding can be monitored using runs of homozygosity (ROH), defined as contiguous lengths of homozygous genotypes observed in an individual’s chromosome. The goal of this study was to evaluate the presence of ROH in Italian Brown Swiss cattle and assess its association with bull fertility. First, we evaluated the association between ROH and male fertility using 1,102 Italian Brown Swiss bulls with sire conception rate records and 572 K SNPs spanning the entire genome. Second, we split the entire population into 100 high-fertility and 100 low-fertility bulls to investigate the potential enrichment of ROH segments in the low-fertility group. Finally, we mapped the significant ROH regions to the bovine genome to identify candidate genes associated with sperm biology and male fertility. Notably, there was a negative association between bull fertility and the amount of homozygosity. Four different ROH regions located in chromosomes 6, 10, 11, and 24 were significantly overrepresented in low-fertility bulls (Fisher’s exact test, p-value <0.01). Remarkably, these four genomic regions harbor many genes such as WDR19, RPL9, LIAS, UBE2K, DPF3, 5S-rRNA, 7SK, U6, and WDR7 that are related to sperm biology and male fertility. Overall, our findings suggest that inbreeding and increased homozygosity have a negative impact on male fertility in Italian Brown Swiss cattle. The quantification of ROH can contribute to minimizing the inbreeding rate and avoid its negative effect on fitness-related traits, such as male fertility.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3