Novel cis compound heterozygous variants in MYO6 causes early onset of non-syndromic hearing loss in a Chinese family

Author:

Ji Haiting,Zhang Lichun,Hussain Hafiz Muhammad Jafar,Aftab Ayesha,Yu Huiqian,Xiao Min

Abstract

Background: Mutations in the MYO6 gene have been associated with both autosomal dominant non-syndromic hearing loss (ADNSHL) and autosomal recessive non-syndromic hearing loss (ARNSHL), with a cumulative identification of 125 pathogenic variants. To investigate the underlying genetic factor within a Chinese family affected with heriditary hearing loss, prompted the utilization of high-throughput sequencing.Method: A detailed clinical investigation was performed. Genetic testing was performed by using target panel sequencing, and Sanger sequencing. Targeted sequencing identified the variants and Sanger sequencing was employed to validate segregation of the identified variants within family. Additionally, bioinformatics analysis was performed to strengthen our findings.Results: Clinical investigation revealed the family members were affected by progressive and sensorineural hearing loss with an onset around 8–10 years old. Furthermore, genetic testing identified novel MYO6 variants, c.[2377T>G; 2382G>T] p.[Trp793Gly; Lys794Asn], positioned in a cis pattern, as plausible pathogenic contributors to early-onset hearing loss characterized by a severe and progressive course. Moreover, bioinformatics analysis showd disruptin in hydrogen bonding of mutant amino acids with interactive amino acids.Conclusion: Our research uncovered a relationship between mutations in the MYO6 gene and non-syndromic hearing loss. We identified two variants, c.[2377T>G; 2382G>T] p.[Trp793Gly; Lys794Asn] in MYO6 as strong candidates responsible for the observed progressive hereditary hearing loss. This study not only adds to our knowledge about hearing problems related to MYO6 but also reveals the presence of monogenic compound heterozygosity. Our study will provide a new sight for genetic diagnosis in such patients and their management for future use.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3