Chromosomal Rearrangements and Origin of the Multiple XX/XY1Y2 Sex Chromosome System in Harttia Species (Siluriformes: Loricariidae)

Author:

Deon Geize Aparecida,Glugoski Larissa,Sassi Francisco de Menezes Cavalcante,Hatanaka Terumi,Nogaroto Viviane,Bertollo Luiz Antônio Carlos,Liehr Thomas,Al-Rikabi Ahmed,Moreira-Filho Orlando,Cioffi Marcelo de Bello,Vicari Marcelo Ricardo

Abstract

The Neotropical genus Harttia comprises species with extensive chromosomal remodeling and distinct sex chromosome systems (SCSs). So far, three different SCSs with male heterogamety have been characterized in the group. In some species, the presence of the XX/XY1Y2 SCS is associated with a decrease in diploid numbers and several chromosomal rearrangements, although a direct relation to sex chromosome differentiation has not been shown yet. Here, we aimed to investigate the differentiation processes that have led to the establishment of the rare XX/XY1Y2 SCS and track its evolutionary history among other Harttia species. For that, four whole chromosome painting probes derived from chromosome 1 of H. torrenticola (HTO-1), chromosomes 9 and X of H. carvalhoi (HCA-9 and HCA-X), and chromosome X from H. intermontana (HIN-X) were applied in nine Harttia species. Homeologous chromosome blocks were located in Harttia species and demonstrated that Robertsonian (Rb) fusions originated HTO-1, HCA-9, and HCA-X chromosomes, while Rb fissions explain Y1 and Y2 sex chromosomes. Specifically, in H. intermontana, HCA-X, HCA-9, and the NOR-bearing chromosome demonstrated that homeologous blocks were used in the HIN-X and metacentric pair 2 origins. Consequently, diploid numbers changed between the studied species. Overall, the data also reinforce the existence of unstable genomic sites promoting chromosomal differentiation and remodeling within the genus Harttia.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3