TMBcalc: a computational pipeline for identifying pan-cancer Tumor Mutational Burden gene signatures

Author:

Privitera Grete Francesca,Alaimo Salvatore,Caruso Anna,Ferro Alfredo,Forte Stefano,Pulvirenti Alfredo

Abstract

Background:In the precision medicine era, identifying predictive factors to select patients most likely to benefit from treatment with immunological agents is a crucial and open challenge in oncology.Methods:This paper presents a pan-cancer analysis of Tumor Mutational Burden (TMB). We developed a novel computational pipeline, TMBcalc, to calculate the TMB. Our methodology can identify small and reliable gene signatures to estimate TMB from custom targeted-sequencing panels. For this purpose, our pipeline has been trained on top of 17 cancer types data obtained from TCGA.Results:Our results show that TMB, computed through the identified signature, strongly correlates with TMB obtained from whole-exome sequencing (WES).Conclusion:We have rigorously analyzed the effectiveness of our methodology on top of several independent datasets. In particular we conducted a comprehensive testing on: (i) 126 samples sourced from the TCGA database; few independent whole-exome sequencing (WES) datasets linked to colon, breast, and liver cancers, all acquired from the EGA and the ICGC Data Portal. This rigorous evaluation clearly highlights the robustness and practicality of our approach, positioning it as a promising avenue for driving substantial progress within the realm of clinical practice.

Funder

Regione Siciliana

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3