Oar-miR-432 Regulates Fat Differentiation and Promotes the Expression of BMP2 in Ovine Preadipocytes

Author:

Jin Meilin,Fei Xiaojuan,Li Taotao,Lu Zengkui,Chu Mingxing,Di Ran,He Xiaoyun,Wang Xiangyu,Wang Yuqing,Yuan Zehu,Quan Kai,Wang Huihua,Wei Caihong

Abstract

The fat tail is a unique characteristic of sheep that represents energy reserves and is a complex adaptative mechanism of fat-tailed sheep to environmental stress. MicroRNA plays a significant role as regulators at the posttranscriptional level, but no studies have explained the molecular mechanisms of miRNA which regulate fat deposition in sheep tails. In this study, mRNA and miRNA analysis examined tail fat tissue from three Hu fat-tailed and three Tibetan thin-tailed sheep. After aligning to the reference sequences, 2,108 differentially expressed genes and 105 differential expression miRNAs were identified, including 1,247 up- and 861 downregulated genes and 43 up- and 62 downregulated miRNAs. Among these differentially expressed miRNAs, oar-miR-432 was one of the most downregulated miRNAs between Hu sheep and Tibetan sheep, and 712 genes were predicted to be targeted by oar-miR-432, 80 of which overlapped with DEGs. The Gene Ontology analysis on these genes showed that BMP2, LEP, GRK5, BMP7, and RORC were enriched in fat cell differentiation terms. The genes for BMP2 targeted by oar-miR-432 were examined using dual-luciferase assay. The oar-miR-432 mimic transfected into preadipocytes resulted in increased expression of BMP2. The marker gene PPAR-γ of fat differentiation had a lower expression than the negative control on days 0, 2, and 4 after induced differentiation. The decrease in the number of lipids in the oar-miR-432 mimic group detected by oil red O stain was also less than that in the negative control. This is the first study to reveal the fat mechanisms by which oar-miR-432 inhibits fat differentiation and promotes the expression of BMP2 in sheep tails.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3