Effect of Panicle Morphology on Grain Filling and Rice Yield: Genetic Control and Molecular Regulation

Author:

Parida Ajay Kumar,Sekhar Sudhanshu,Panda Binay Bhushan,Sahu Gyanasri,Shaw Birendra Prasad

Abstract

The demand for rice is likely to increase approximately 1.5 times by the year 2050. In contrast, the rice production is stagnant since the past decade as the ongoing rice breeding program is unable to increase the production further, primarily because of the problem in grain filling. Investigations have revealed several reasons for poor filling of the grains in the inferior spikelets of the compact panicle, which are otherwise genetically competent to develop into well-filled grains. Among these, the important reasons are 1) poor activities of the starch biosynthesizing enzymes, 2) high ethylene production leading to inhibition in expressions of the starch biosynthesizing enzymes, 3) insufficient division of the endosperm cells and endoreduplication of their nuclei, 4) low accumulation of cytokinins and indole-3-acetic acid (IAA) that promote grain filling, and 5) altered expressions of the miRNAs unfavorable for grain filling. At the genetic level, several genes/QTLs linked to the yield traits have been identified, but the information so far has not been put into perspective toward increasing the rice production. Keeping in view the genetic competency of the inferior spikelets to develop into well-filled grains and based on the findings from the recent research studies, improving grain filling in these spikelets seems plausible through the following biotechnological interventions: 1) spikelet-specific knockdown of the genes involved in ethylene synthesis and overexpression of β-CAS (β-cyanoalanine) for enhanced scavenging of CN formed as a byproduct of ethylene biosynthesis; 2) designing molecular means for increased accumulation of cytokinins, abscisic acid (ABA), and IAA in the caryopses; 3) manipulation of expression of the transcription factors like MYC and OsbZIP58 to drive the expression of the starch biosynthesizing enzymes; 4) spikelet-specific overexpression of the cyclins like CycB;1 and CycH;1 for promoting endosperm cell division; and 5) the targeted increase in accumulation of ABA in the straw during the grain filling stage for increased carbon resource remobilization to the grains. Identification of genes determining panicle compactness could also lead to an increase in rice yield through conversion of a compact-panicle into a lax/open one. These efforts have the ability to increase rice production by as much as 30%, which could be more than the set production target by the year 2050.

Funder

Science and Engineering Research Board

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3