Mapping quantitative trait loci and predicting candidate genes for Striga resistance in maize using resistance donor line derived from Zea diploperennis

Author:

Badu-Apraku B.,Adewale S.,Paterne A.,Offornedo Q.,Gedil M.

Abstract

The parasitic weed, Striga is a major biological constraint to cereal production in sub-Saharan Africa (SSA) and threatens food and nutrition security. Two hundred and twenty-three (223) F2:3 mapping population involving individuals derived from TZdEI 352 x TZEI 916 were phenotyped for four Striga-adaptive traits and genotyped using the Diversity Arrays Technology (DArT) to determine the genomic regions responsible for Striga resistance in maize. After removing distorted SNP markers, a genetic linkage map was constructed using 1,918 DArTseq markers which covered 2092.1 cM. Using the inclusive composite interval mapping method in IciMapping, twenty-three QTLs influencing Striga resistance traits were identified across four Striga-infested environments with five stable QTLs (qGY4, qSC2.1, qSC2.2, qSC5, and qSC6) detected in more than one environment. The variations explained by the QTLs ranged from 4.1% (qSD2.3) to 14.4% (qSC7.1). Six QTLs each with significant additive × environment interactions were also identified for grain yield and Striga damage. Gene annotation revealed candidate genes underlying the QTLs, including the gene models GRMZM2G077002 and GRMZM2G404973 which encode the GATA transcription factors, GRMZM2G178998 and GRMZM2G134073 encoding the NAC transcription factors, GRMZM2G053868 and GRMZM2G157068 which encode the nitrate transporter protein and GRMZM2G371033 encoding the SBP-transcription factor. These candidate genes play crucial roles in plant growth and developmental processes and defense functions. This study provides further insights into the genetic mechanisms of resistance to Striga parasitism in maize. The QTL detected in more than one environment would be useful for further fine-mapping and marker-assisted selection for the development of Striga resistant and high-yielding maize cultivars.

Funder

Bill and Melinda Gates Foundation

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3