Microbial gene expression during hibernation in arctic ground squirrels: greater differences across gut sections than in response to pre-hibernation dietary protein content

Author:

Grond Kirsten,Buck C. Loren,Duddleston Khrystyne N.

Abstract

Obligate seasonal hibernators fast for 5–9 months depending on species yet resist muscle atrophy and emerge with little lean mass loss. The role of the gut microbiome in host nitrogen metabolism during hibernation is therefore of considerable interest, and recent studies support a role for urea nitrogen salvage (UNS) in host-protein conservation. We were interested in the effect of pre-hibernation diet on UNS and the microbial provision of essential amino acids (EAAs) during hibernation; therefore, we conducted a study whereby we fed arctic ground squirrels (Urocitellus parryii) pre-hibernation diets containing 9% vs. 18% protein and compared the expression of gut bacterial urease and amino acid (AA) metabolism genes in 4 gut sections (cecum mucosa, cecum lumen, small intestine [SI] mucosa, and SI lumen) during hibernation. We found that pre-hibernation dietary protein content did not affect expression of complete bacterial AA pathway genes during hibernation; however, several individual genes within EAA pathways were differentially expressed in squirrels fed 18% pre-hibernation dietary protein. Expression of genes associated with AA pathways was highest in the SI and lowest in the cecum mucosa. Additionally, the SI was the dominant expression site of AA and urease genes and was distinct from other sections in its overall microbial functional and taxonomic composition. Urease expression in the gut microbiome of hibernating squirrels significantly differed by gut section, but not by pre-hibernation dietary protein content. We identified two individual genes that are part of the urea cycle and involved in arginine biosynthesis, which were significantly more highly expressed in the cecum lumen and SI mucosa of squirrels fed a pre-hibernation diet containing 18% protein. Six bacterial genera were responsible for 99% of urease gene expression: Cupriavidus, Burkholderia, Laribacter, Bradhyrizobium, Helicobacter, and Yersinia. Although we did not find a strong effect of pre-hibernation dietary protein content on urease or AA metabolism gene expression during hibernation, our data do suggest the potential for pre-hibernation diet to modulate gut microbiota function during hibernation, and further investigations are warranted.

Funder

National Institutes of Health

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Reference55 articles.

1. Glycerol metabolism in the hibernating black bear;Ahlquist;J. Comp. Physiol. B.,1984

2. Freeze avoidance in a mammal: body temperatures below 0°C in an arctic hibernator;Barnes;Science,1989

3. Effect of diet and dietary components on the composition of the gut microbiota;Beam;Nutrients,2021

4. Small-intestinal or colonic microbiota as a potential amino acid source in animals;Bergen;Amino Acids,2015

5. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling BligheK. RanaS. LewisM. 2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3