Author:
Jin Xin,Wang Jun,Ge Lina,Hu Qing
Abstract
Objective: Sciatica pertains to neuropathic pain that has been associated with inflammatory response. We aimed to identify significant immune-related biomarkers for sciatica in peripheral blood.Methods: We utilized the GSE150408 expression profiling data from the Gene Expression Omnibus (GEO) database as the training dataset and extracted immune-related genes for further analysis. Differentially expressed immune-related genes (DEIRGs) between healthy controls and patients with sciatica were selected using the “limma” package and verified in clinical specimens by quantitative reverse transcription PCR (RT-qPCR). A diagnostic immune-related gene signature was established using the training model and random forest (RF), generalized linear model (GLM), and support vector machine (SVM) models. Sciatica patient subtypes were identified using the consensus clustering method.Results: Thirteen significant DEIRGs were acquired, of which five (CRP, EREG, FAM19A4, RLN1, and WFIKKN1) were selected to establish a diagnostic immune-related gene signature according to the most appropriate training model, namely, the RF model. A clinical application nomogram model was established based on the expression level of the five DEIRGs. The sciatica patients were divided into two subtypes (C1 and C2) according to the consensus clustering method.Conclusions: Our research established a diagnostic five immune-related gene signature to discriminate sciatica and identified two sciatica subtypes, which may be beneficial to the clinical diagnosis and treatment of sciatica.
Subject
Genetics(clinical),Genetics,Molecular Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献