DDX59-AS1 is a prognostic biomarker and correlated with immune infiltrates in OSCC

Author:

Sun Yang,Zhou Qianrong,Sun Jian,Bi Wei,Li Ruixue,Wu Xingwen,Li Ni,Song Liang,Yang Fei,Yu Youcheng

Abstract

Background: lncRNAs play a critical role in multiple steps of gene regulation associated with tumor progression. However, the engagement of DDX59-AS1, a lncRNA, remains equivocal, particularly in oral squamous cell carcinoma (OSCC). In this study, the expression of DDX59-AS1 and its association with immune infiltration were investigated, and its prognostic value in OSSC was evaluated.Methods: OSCC patients were collected from The Cancer Genome Atlas (TCGA) database. The expression of DDX59-AS1 in OSCC and healthy tissue was compared using Wilcoxon rank sum test. The relationship between DDX59-AS1 and clinicopathological features was analyzed using Logistic regression. Gene ontology (GO) terminology analysis, gene set enrichment analysis (GSEA), and single sample GSEA (ssGSEA) were utilized to interpret the enrichment pathway and functionality and to quantify the immune cell infiltration of DDX59-AS1. The correlation between survival and DDA59-AS1 was evaluated by Kaplan-Meier analysis and Cox regression. The prognostic impact of DDX59-AS1 was predicted by the nomogram based on Cox multivariate analysis.Results: High expression of DDX59-AS1 was significantly correlated with T stage, clinical stage, race, and age (p < 0.05). Multivariate survival analysis demonstrated that the high expression of DDX59-AS1 was associated with lower overall and specific survival rates. The prognosis prediction was validated by the nomogram and calibration curves. The expression of DDX59-AS1 was negatively correlated with Mast cells, Tfh, T cells, Treg, and B cells, and positively related with the Tgd infiltration level.Conclusion: DDX59-AS1 played a crucial role in the progression and prognosis of OSCC and was potentially a predictive biomarker for OSCC.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Natural Science Foundation of Fujian Province

Shanghai Xuhui District Central Hospital

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3