Developing genomic tools to assist turnip rape [Brassica rapa (L.) subsp.oleifera (DC.) Metzg.] breeding

Author:

Alemu Admas,Sundaramoorthy Jagadeesh,Abreha Kibrom B.,Enyew Muluken,Geleta Mulatu,Carlsson Anders S.

Abstract

IntroductionTurnip rape is recognized as an oilseed crop contributing to environmentally sustainable agriculture via integration into crop rotation systems. Despite its various advantages, the crop’s cultivation has declined globally due to a relatively low productivity, giving way to other crops. The use of genomic tools could enhance the breeding process and accelerate genetic gains. Therefore, the present research investigated 170 turnip rape accessions representing its global gene pool to identify SNP markers associated nine phenological and agro-morphological traits and estimate the genomic breeding values (GEBVs) of the germplasm through GWAS and genomic prediction analyses, respectively.MethodsField trials were conducted at two sites in northern and southern Sweden to obtain the phenotypic data while genotyping was conducted via the genotyping-by-sequencing (GBS) method. The traits studied include days to flowering (DTF) and maturity (DTM), plant height (PH), seed yield (YLD), thousand seed weight (TSW), silique length (SL), number of siliques (NS), number of seeds per silique (SS), and pod shattering resistance (PSHR).Results and conclusionAnalysis of variance revealed substantial variation among accessions, with significant genotype-by-environment interaction for most traits. A total of 25, 17, 16, 14, 7, 5, 3, and 3 MTAs were identified for TSW, DTF, PH, PSHR, SL, YLD, SS and DTM, respectively. An 80%–20% training-test set genomic prediction analysis was conducted using the ridge regression – BLUP (RR-BLUP) model. The accuracy of genomic prediction for most traits was high, indicating that these tools may assist turnip rape breeders in accelerating genetic gains. The study highlights the potential of genomic tools to significantly advance breeding programs for turnip rape by identifying pivotal SNP markers and effectively estimating genomic breeding values. Future breeding perspectives should focus on leveraging these genomic insights to enhance agronomic traits and productivity, thereby reinstating turnip rape as a competitive and sustainable crop in Sweden and broader global agriculture.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3