Case Report: DNAAF4 Variants Cause Primary Ciliary Dyskinesia and Infertility in Two Han Chinese Families

Author:

Guo Ting,Lu Chenyang,Yang Danhui,Lei Cheng,Liu Ying,Xu Yingjie,Yang Binyi,Wang Rongchun,Luo Hong

Abstract

Background: Primary ciliary dyskinesia (PCD) is a rare genetic disorder, predominantly autosomal recessive. The dynein axonemal assembly factor 4 (DNAAF4) is mainly involved in the preassembly of multisubunit dynein protein, which is fundamental to the proper functioning of cilia and flagella. There are few reports of PCD-related pathogenic variants of DNAAF4, and almost no DNAAF4-related articles focused on sperm phenotype. Moreover, the association between DNAAF4 and scoliosis has never been reported, to the best of our knowledge.Materials and Methods: We recruited two patients with a clinical diagnosis of PCD. One came from a consanguineous and another from a non-consanguineous family. Clinical data, laboratory test results, and imaging data were analyzed. Through whole exome sequencing, immunofluorescence, electron microscopy, high-speed video microscopy analysis, and hematoxylin–eosin (HE) staining, we identified the disease-associated variants and validated the pathogenicity.Results: Proband 1 (P1, F1: II-1), a 19-year-old man, comes from a non-consanguineous family-I, and proband 2 (P2, F2: II-1), a 37-year-old woman, comes from a consanguineous family-II. Both had sinusitis, bronchiectasis, situs inversus, and scoliosis. P1 also had asthenoteratozoospermia, and P2 had an immature uterus. Two homozygous pathogenic variants in DNAAF4 (NM_130810.4), c.988C > T, p.(Arg330Trp), and DNAAF4 (NM_130810.4), c.733 C > T, p.(Arg245*), were identified through whole exome sequencing. High-speed microscopy analysis showed that most of the cilia were static in P1, with complete static of the respiratory cilia in P2. Immunofluorescence showed that the outer dynein arms (ODA) and inner dynein arms (IDA) were absent in the respiratory cilia of both probands, as well as in the sperm flagellum of P1. Transmission electron microscopy revealed the absence of ODA and IDA of respiratory cilia of P2, and HE staining showed irregular, short, absent, coiled, and bent flagella.Conclusion: Our study identified a novel variant c.733C > T, which expanded the spectrum of DNAAF4 variants. Furthermore, we linked DNAAF4 to asthenoteratozoospermia and likely scoliosis in patients with PCD. This study will contribute to a better understanding of PCD.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3