Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks

Author:

Ma Yuzhou,Zhang Han,Jin Chen,Kang Chuanze

Abstract

Background: Long non-coding RNAs (lncRNAs) play crucial roles in numerous biological processes. Investigation of the lncRNA-protein interaction contributes to discovering the undetected molecular functions of lncRNAs. In recent years, increasingly computational approaches have substituted the traditional time-consuming experiments utilized to crack the possible unknown associations. However, significant explorations of the heterogeneity in association prediction between lncRNA and protein are inadequate. It remains challenging to integrate the heterogeneity of lncRNA-protein interactions with graph neural network algorithms.Methods: In this paper, we constructed a deep architecture based on GNN called BiHo-GNN, which is the first to integrate the properties of homogeneous with heterogeneous networks through bipartite graph embedding. Different from previous research, BiHo-GNN can capture the mechanism of molecular association by the data encoder of heterogeneous networks. Meanwhile, we design the process of mutual optimization between homogeneous and heterogeneous networks, which can promote the robustness of BiHo-GNN.Results: We collected four datasets for predicting lncRNA-protein interaction and compared the performance of current prediction models on benchmarking dataset. In comparison with the performance of other models, BiHo-GNN outperforms existing bipartite graph-based methods.Conclusion: Our BiHo-GNN integrates the bipartite graph with homogeneous graph networks. Based on this model structure, the lncRNA-protein interactions and potential associations can be predicted and discovered accurately.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Reference44 articles.

1. Graph convolutional matrix completion;Berg,2017

2. Random forests;Breiman;Mach. Learn.,2001

3. Noncode v3. 0: Integrative annotation of long noncoding rnas;Bu;Nucleic acids Res.,2012

4. A comprehensive survey of graph embedding: Problems, techniques, and applications;Cai;IEEE Trans. Knowl. Data Eng.,2018

5. Bipartite graph embedding via mutual information maximization;Cao,2021

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3