Exploring the molecular landscape of osteosarcoma through PTTG family genes using a detailed multi-level methodology

Author:

Lu Yulin,Wang Danjun,Chen Guoao,Shan Zitong,Li Dongmei

Abstract

BackgroundOsteosarcoma (OS) poses a significant clinical challenge, necessitating a comprehensive exploration of its molecular underpinnings.MethodsThis study explored the roles of PTTG family genes (PTTG1, PTTG2, and PTTG3P) in OS, employing a multifaceted approach encompassing molecular experiments, including OS cell lines culturing, RT-qPCR, bisulfite and Whole Exome Sequencing (WES) and in silico experiments, including The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets-based validation, overall survival, gene enrichment, functional assays, and molecular docking analyses.ResultsOur findings reveal a consistent up-regulation of PTTG genes in OS cell lines, supported by RT-qPCR experiments and corroborated across various publically available expression datasets databases. Importantly, ROC curve analyses highlight their potential as diagnostic markers. Moving beyond expression profiles, we unveil the epigenetic landscape by demonstrating significant hypomethylation of CpG islands associated with PTTG genes in OS. The negative correlation between methylation status and mRNA expression emphasizes the regulatory role of promoter methylation in PTTG gene expression. Contrary to expectations, genetic mutations in PTTG genes are rare in OS, with only benign mutations observed. Moreover, functional assays also confirmed the oncogenic roles of the PTTG gene in the development of OS. Lastly, we also revealed that Calcitriol is the most appropriate drug that can be utilized to treat OS in the context of PTTG genes.ConclusionThe identification of PTTG genes as potential diagnostic markers and their association with epigenetic alterations opens new avenues for understanding OS pathogenesis and developing targeted therapies. As we navigate the complex landscape of OS, this study contributes essential insights that may pave the way for improved diagnostic and therapeutic strategies in its management.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3