Genetic and morpho-physiological analyses of the tolerance and recovery mechanisms in seedling stage spring wheat under drought stress

Author:

Ahmed Asmaa A. M.,Dawood Mona F. A.,Elfarash Ameer,Mohamed Elsayed A.,Hussein Mohamed Y.,Börner Andreas,Sallam Ahmed

Abstract

Drought is one of the complex abiotic stresses that affect the growth and production of wheat in arid and semiarid countries. In this study, a set of 172 diverse spring wheat genotypes from 20 different countries were assessed under drought stress at the seedling stage. Besides seedling length, two types of traits were recorded, namely: tolerance traits (days to wilting, leaf wilting, and the sum of leaf wilting), and recovery traits (days to regrowth, regrowth biomass, and drought survival rate). In addition, tolerance index, recovery index, and drought tolerance index (DTI) were estimated to select the most drought tolerant genotypes. Moreover, leaf protein content (P), amino acid (AM), proline content (PRO), glucose (G), fructose (F), and total soluble carbohydrates (TSC) were measured under control and drought conditions to study the changes in each physiological trait due to drought stress. All genotypes showed a high significant genetic variation in all the physio-morphological traits scored under drought stress. High phenotypic and genotypic correlations were found among all seedling morphological traits. Among the studied indices, the drought tolerance index (DTI) had the highest phenotypic and genotypic correlations with all tolerance and recovery traits. The broad-sense heritability (H2) estimates were high for morphological traits (83.85–92.27), while the physiological traits ranged from 96.41 to 98.68 under the control conditions and from 97.13 to 99.99 under drought stress. The averages of the physiological traits (proteins, amino acids, proline, glucose, fructose, and total soluble carbohydrates) denoted under drought stress were higher than those recorded under well-watered conditions except for proteins. In this regard, amino acids, glucose, and total soluble carbohydrates had a significant correlation with all morphological traits. The selection for drought tolerance revealed 10 tolerant genotypes from different countries (8 genotypes from Egypt, one from Morocco, and one from the United States). These selected genotypes were screened for the presence of nine specific TaDREB1 alleles. Six primers were polymorphic among the selected genotypes. Genetic diversity among the selected genotypes was investigated using 21,450 SNP markers. The results of the study shed light on the different mechanisms for drought tolerance that wheat plants use to tolerate and survive under drought stress. The genetic analysis performed in this study suggested the most suitable genotypes for selective breeding at the seedling stage under water deficit.

Funder

Science and Technology Development Fund

Leibniz-Gemeinschaft

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3