Transcriptome analysis reveals defense-related genes and pathways during dodder (Cuscuta australis) parasitism on white clover (Trifolium repens)

Author:

Zhou Li,Zawaira Alexander,Lu Qiuwei,Yang Beifen,Li Junmin

Abstract

Dodders (Cuscuta australis R. Br.) are holo-parasitic stem angiosperms with an extensive host range that have significant ecological and economic potential impact on the ecosystem and the agricultural system. However, how the host plant responds to this biotic stress remains mostly unexplored. To identify the defense-related genes and the pathways in white clover (Trifolium repens L.) induced by dodder parasitism, we performed a comparative transcriptome analysis of the leaf and root tissues from white clover with and without dodder infection by high throughput sequencing. We identified 1,329 and 3,271 differentially expressed genes (DEGs) in the leaf and root tissues, respectively. Functional enrichment analysis revealed that plant-pathogen interaction, plant hormone signal transduction, and phenylpropanoid biosynthesis pathways were significantly enriched. Eight WRKY, six AP2/ERF, four bHLH, three bZIP, three MYB, and three NAC transcription factors showed a close relationship with lignin synthesis-related genes, which defended white clover against dodder parasitism. Real-time quantitative PCR (RT-qPCR) for nine DEGs, further validated the data obtained from transcriptome sequencing. Our results provide new insights into understanding the complex regulatory network behind these parasite-host plant interactions.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3