Subject clustering by IF-PCA and several recent methods

Author:

Chen Dieyi,Jin Jiashun,Ke Zheng Tracy

Abstract

Subject clustering (i.e., the use of measured features to cluster subjects, such as patients or cells, into multiple groups) is a problem of significant interest. In recent years, many approaches have been proposed, among which unsupervised deep learning (UDL) has received much attention. Two interesting questions are 1) how to combine the strengths of UDL and other approaches and 2) how these approaches compare to each other. We combine the variational auto-encoder (VAE), a popular UDL approach, with the recent idea of influential feature-principal component analysis (IF-PCA) and propose IF-VAE as a new method for subject clustering. We study IF-VAE and compare it with several other methods (including IF-PCA, VAE, Seurat, and SC3) on 10 gene microarray data sets and eight single-cell RNA-seq data sets. We find that IF-VAE shows significant improvement over VAE, but still underperforms compared to IF-PCA. We also find that IF-PCA is quite competitive, slightly outperforming Seurat and SC3 over the eight single-cell data sets. IF-PCA is conceptually simple and permits delicate analysis. We demonstrate that IF-PCA is capable of achieving phase transition in a rare/weak model. Comparatively, Seurat and SC3 are more complex and theoretically difficult to analyze (for these reasons, their optimality remains unclear).

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Reference52 articles.

1. Entrywise eigenvector analysis of random matrices with low expected rank;Abbe;Ann. statistics,2020

2. Adapting to unknown sparsity by controlling the false discovery rate;Abramovich;Ann. Statistics,2006

3. k-means++: The advantages of careful seeding;Arthur,2007

4. The generalized higher criticism for testing snp-set effects in genetic association studies;Barnett;J. Am. Stat. Assoc.,2017

5. Theoretical foundations of t-sne for visualizing high-dimensional clustered data;Cai;J. Mach. Learn. Resarch,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3