Probabilistic edge inference of gene networks with markov random field-based bayesian learning

Author:

Huang Yu-Jyun,Mukherjee Rajarshi,Hsiao Chuhsing Kate

Abstract

Current algorithms for gene regulatory network construction based on Gaussian graphical models focuses on the deterministic decision of whether an edge exists. Both the probabilistic inference of edge existence and the relative strength of edges are often overlooked, either because the computational algorithms cannot account for this uncertainty or because it is not straightforward in implementation. In this study, we combine the Bayesian Markov random field and the conditional autoregressive (CAR) model to tackle simultaneously these two tasks. The uncertainty of edge existence and the relative strength of edges can be measured and quantified based on a Bayesian model such as the CAR model and the spike-and-slab lasso prior. In addition, the strength of the edges can be utilized to prioritize the importance of the edges in a network graph. Simulations and a glioblastoma cancer study were carried out to assess the proposed model’s performance and to compare it with existing methods when a binary decision is of interest. The proposed approach shows stable performance and may provide novel structures with biological insights.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3