PSPI: A deep learning approach for prokaryotic small protein identification

Author:

Weston Matthew,Hu Haiyan,Li Xiaoman

Abstract

Small Proteins (SPs) are pivotal in various cellular functions such as immunity, defense, and communication. Despite their significance, identifying them is still in its infancy. Existing computational tools are tailored to specific eukaryotic species, leaving only a few options for SP identification in prokaryotes. In addition, these existing tools still have suboptimal performance in SP identification. To fill this gap, we introduce PSPI, a deep learning-based approach designed specifically for predicting prokaryotic SPs. We showed that PSPI had a high accuracy in predicting generalized sets of prokaryotic SPs and sets specific to the human metagenome. Compared with three existing tools, PSPI was faster and showed greater precision, sensitivity, and specificity not only for prokaryotic SPs but also for eukaryotic ones. We also observed that the incorporation of (n, k)-mers greatly enhances the performance of PSPI, suggesting that many SPs may contain short linear motifs. The PSPI tool, which is freely available at https://www.cs.ucf.edu/∼xiaoman/tools/PSPI/, will be useful for studying SPs as a tool for identifying prokaryotic SPs and it can be trained to identify other types of SPs as well.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3