Elucidation of the Host Bronchial Lymph Node miRNA Transcriptome Response to Bovine Respiratory Syncytial Virus

Author:

Johnston Dayle,Earley Bernadette,McCabe Matthew S.,Kim Jaewoo,Taylor Jeremy F.,Lemon Ken,McMenamy Michael,Duffy Catherine,Cosby S. Louise,Waters Sinéad M.

Abstract

Bovine respiratory disease (BRD) causes substantial morbidity and mortality, affecting cattle of all ages. One of the main causes of BRD is an initial inflammatory response to bovine respiratory syncytial virus (BRSV). MicroRNAs are novel and emerging non-coding small RNAs that regulate many biological processes and are implicated in various inflammatory diseases. The objective of the present study was to elucidate the changes in the bovine bronchial lymph node miRNA transcriptome in response to BRSV following an experimental viral challenge. Holstein-Friesian calves were either administered a challenge dose of BRSV (103.5 TCID50/ml × 15 ml) (n = 12) or were mock inoculated with sterile phosphate buffered saline (n = 6). Daily scoring of clinical signs was performed and calves were euthanized at day 7 post-challenge. Bronchial lymph nodes were collected for subsequent RNA extraction and sequencing (75 bp). Read counts for known miRNAs were generated using the miRDeep2 package using the UMD3.1 reference genome and the bovine mature miRNA sequences from the miRBase database (release 22). EdgeR was used for differential expression analysis and Targetscan was used to identify target genes for the differentially expressed (DE) miRNAs. Target genes were examined for enriched pathways and gene ontologies using Ingenuity Pathway Analysis (Qiagen). Multi-dimensional scaling (MDS) based on miRNA gene expression changes, revealed a clearly defined separation between the BRSV challenged and control calves, although the clinical manifestation of disease was only mild. One hundred and nineteen DE miRNAs (P < 0.05, FDR < 0.1, fold change > 1.5) were detected between the BRSV challenged and control calves. The DE miRNAs were predicted to target 465 genes which were previously found to be DE in bronchial lymph node tissue, between these BRSV challenged and control calves. Of the DE predicted target genes, 455 had fold changes that were inverse to the corresponding DE miRNAs. There were eight enriched pathways among the DE predicted target genes with inverse fold changes to their corresponding DE miRNA including: granulocyte and agranulocyte adhesion and diapedesis, interferon signalling and role of pathogen recognition receptors in recognition of bacteria and viruses. Functions predicted to be increased included: T cell response, apoptosis of leukocytes, immune response of cells and stimulation of cells. Pathogen recognition and proliferation of cytotoxic T cells are vital for the recognition of the virus and its subsequent elimination.

Publisher

Frontiers Media SA

Subject

Genetics(clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3