Author:
Xu Si,Wang Tianfeng,Lu Xiaoyu,Zhang Huixue,Liu Li,Kong Xiaotong,Li Shuang,Wang Xu,Gao Hongyu,Wang Jianjian,Wang Lihua
Abstract
Myasthenia gravis (MG) is an autoimmune disease associated with autoantibody production that leads to skeletal muscle weakness. The molecular mechanisms underlying MG are not fully understood. We analyzed the gene expression profile (GSE85452) and methylation profile (GSE85647) of MG samples from the GEO database to identify aberrantly methylated-differentially expressed genes. By integrating the datasets, we identified 143 hypermethylation-low expression genes and 91 hypomethylation-high expression genes. Then we constructed PPI network and ceRNA networks by these genes. Phosphatase and tensin homolog (PTEN) and Abelson tyrosine-protein kinase (ABL)1 were critical genes in both PPI networks and ceRNA networks. And potential MG associated lncRNAs were selected by comprehensive analysis of the critical genes and ceRNA networks. In the hypermethylation-low expression genes associated ceRNA network, sirtuin (SIRT)1 was the most important gene and the lncRNA HLA complex (HC) P5 had the highest connection degree. Meanwhile, PTEN was the most important gene and the lncRNA LINC00173 had the highest connection degree in the hypomethylation-high expression genes associated ceRNA network. LINC00173 was validated to be upregulated in MG patients by qRT-PCR (P = 0.005), which indicated LINC00173 might be a potential biomarker for MG. These results provide a basis for future studies on the molecular pathogenesis of MG.
Subject
Genetics(clinical),Genetics,Molecular Medicine
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献