Transcriptome Profiling to the Effects of Drought Stress on Different Propagation Modes of Tea Plant (Camellia sinensis)

Author:

Ding Zhou,Jiang Changjun

Abstract

Tea plant (Camellia sinensis) is an important economic beverage crop. Drought stress seriously affects the growth and development of tea plant and the accumulation of metabolites, as well as the production, processing, yield and quality of tea. Therefore, it is necessary to understand the reaction mechanism of tea plant under drought conditions and find efficient control methods. Based on transcriptome sequencing technology, this study studied the difference of metabolic level between sexual and asexual tea plants under drought stress. In this study, there were multiple levels of up-regulation and down-regulation of differential genes related to cell composition, molecular function and biological processes. Transcriptomic data show that the metabolism of tea plants with different propagation modes of QC and ZZ is different under drought conditions. In the expression difference statistics, it can be seen that the differential genes of QC are significantly more than ZZ; GO enrichment analysis also found that although differential genes in biological process are mainly enriched in the three pathways of metabolic, single organism process and cellular process, cellular component is mainly enriched in cell, cell part, membrane, and molecular function, and binding, catalytic activity, and transporter activity; the enrichment order of differential genes in these pathways is different in QC and ZZ. This difference is caused by the way of reproduction. The further study of these differential genes will lay a foundation for the cultivation methods and biotechnology breeding to improve the quality of tea.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3