Genome-wide characterization of the NLR gene family in tomato (Solanum lycopersicum) and their relatedness to disease resistance

Author:

Bashir Sehrish,Rehman Nazia,Fakhar Zaman Fabia,Naeem Muhammad Kashif,Jamal Atif,Tellier Aurélien,Ilyas Muhammad,Silva Arias Gustavo Adolfo,Khan Muhammad Ramzan

Abstract

Nucleotide-binding leucine-rich-repeat receptors (NLR), the largest group of genes associated with plant disease resistance (R), have attracted attention due to their crucial role in protecting plants from pathogens. Genome-wide studies of NLRs have revealed conserved domains in the annotated tomato genome. The 321 NLR genes identified in the tomato genome have been randomly mapped to 12 chromosomes. Phylogenetic analysis and classification of NLRs have revealed that 211 genes share full-length domains categorized into three major clades (CNL, TNL, and RNL); the remaining 110 NLRs share partial domains and are classified in CN, TN, and N according to their motifs and gene structures. The cis-regulatory elements of NLRs exhibit the maximum number of these elements and are involved in response to biotic and abiotic stresses, pathogen recognition, and resistance. Analysis of the phylogenetic relationship between tomato NLRs and orthologs in other species has shown conservation among Solanaceae members and variation with A. thaliana. Synteny and Ka/Ks analyses of Solanum lycopersicum and Solanum tuberosum orthologs have underscored the importance of NLR conservation and diversification from ancestral species millions of years ago. RNA-seq data and qPCR analysis of early and late blight diseases in tomatoes revealed consistent NLR expression patterns, including upregulation in infected compared to control plants (with some exceptions), suggesting the role of NLRs as key regulators in early blight resistance. Moreover, the expression levels of NLRs associated with late blight resistance (Solyc04g007060 [NRC4] and Solyc10g008240 [RIB12]) suggested that they regulate S. lycopersicum resistance to P. infestans. These findings provide important fundamental knowledge for understanding NLR evolution and diversity and will empower the broader characterization of disease resistance genes for pyramiding through speed cloning to develop disease-tolerant varieties.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3