Identification of circulating immune landscape in ischemic stroke based on bioinformatics methods

Author:

Li Danyang,Li Lifang,Quan Fei,Wang Tianfeng,Xu Si,Li Shuang,Tian Kuo,Feng Meng,He Ni,Tian Liting,Chen Biying,Zhang Huixue,Wang Lihua,Wang Jianjian

Abstract

Ischemic stroke (IS) is a high-incidence disease that seriously threatens human life and health. Neuroinflammation and immune responses are key players in the pathophysiological processes of IS. However, the underlying immune mechanisms are not fully understood. In this study, we attempted to identify several immune biomarkers associated with IS. We first retrospectively collected validated human IS immune-related genes (IS-IRGs) as seed genes. Afterward, potential IS-IRGs were discovered by applying random walk with restart on the PPI network and the permutation test as a screening strategy. Doing so, the validated and potential sets of IS-IRGs were merged together as an IS-IRG catalog. Two microarray profiles were subsequently used to explore the expression patterns of the IS-IRG catalog, and only IS-IRGs that were differentially expressed between IS patients and controls in both profiles were retained for biomarker selection by the Random Forest rankings. CLEC4D and CD163 were finally identified as immune biomarkers of IS, and a classification model was constructed and verified based on the weights of two biomarkers obtained from the Neural Network algorithm. Furthermore, the CIBERSORT algorithm helped us determine the proportions of circulating immune cells. Correlation analyses between IS immune biomarkers and immune cell proportions demonstrated that CLEC4D was strongly correlated with the proportion of neutrophils (r = 0.72). These results may provide potential targets for further studies on immuno-neuroprotection therapies against reperfusion injury.

Funder

Heilongjiang Provincial Postdoctoral Science Foundation

National Key Research and Development Program of China

Natural Science Foundation of Heilongjiang Province

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3