Author:
Xu Lei-Xin,Chen Yang-Yang
Abstract
The applications of the deep reinforcement learning method to achieve the arcs welding by multi-robot systems are presented, where the states and the actions of each robot are continuous and obstacles are considered in the welding environment. In order to adapt to the time-varying welding task and local information available to each robot in the welding environment, the so-called multi-agent deep deterministic policy gradient (MADDPG) algorithm is designed with a new set of rewards. Based on the idea of the distributed execution and centralized training, the proposed MADDPG algorithm is distributed. Simulation results demonstrate the effectiveness of the proposed method.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献