Author:
Fooladivanda Dariush,Hu Qie,Chang Young Hwan
Abstract
A timely, accurate, and secure dynamic state estimation is needed for reliable monitoring and efficient control of microgrids. The synchrophasor technology enables system operators to obtain synchronized measurements in real-time and to develop dynamic state estimators for monitoring and control of microgrids. However, in practice, sensor measurements can be corrupted or attacked. In this study, we consider an AC microgrid comprising several synchronous generators and inverter-interface power supplies, and focus on securely estimating the dynamic states of the microgrid from a set of corrupted data. We propose a secure dynamic state estimator which allows the microgrid operator to reconstruct the dynamic states of the microgrid from a set of attacked or corrupted data without any assumption on attacks or corruptions. Finally, we consider an AC microgrid with the same topology as the IEEE 33-bus distribution system, and show that the proposed secure estimation algorithm can accurately reconstruct the attack signals.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献