Negotiation-based cooperative planning of local trajectories

Author:

Schneider Julian,Rothfuß Simon,Hohmann Sören

Abstract

In this work, a cooperative local trajectory planner based on negotiation theory for human‐robot interaction is developed. It is implemented on a robot, which accompanies patients to examination rooms as part of the HoLLiECares project. For this purpose, an existing human–machine cooperation model for decision-making in one-time conflict cases is applied to a time-repeated negotiation of motion primitives. In negotiation theory, time pressure in the form of deadlines is classically used to achieve agreements. Since deadlines do not naturally exist in all technical applications and their artificial insertion would create an unintuitive system behavior for an involved human, a reciprocal tit-for-tat strategy for the automation is applied in the present work to achieve agreements. This leads to a system behavior that is able to dynamically change between human-in-the-lead behavior or automation-in-the-lead behavior and everything in between depending on the concession of the human and thus on human’s desire. The cooperative negotiation-based local trajectory planner is tested simulatively.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference21 articles.

1. Omnidirectional platforms for gait training: Admittance-shaping control for enhanced mobility;Aguirre-Ollinger;J. Intelligent Robotic Syst.,2021

2. Exploring the Strategy Space of Negotiating Agents

3. A novel human-robot cooperative method for upper extremity rehabilitation;Bai;Int. J. Soc. Robot.,2017

4. An autonomous tour guide robot in a next generation smart museum;Bueno,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trustworthiness of Optimality Condition Violation in Inverse Dynamic Game Methods Based on the Minimum Principle;2024 IEEE Conference on Control Technology and Applications (CCTA);2024-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3