A Submodular Receding Horizon Control Strategy to Distributed Persistent Monitoring

Author:

Zhao Xiaohu,Zou Yuanyuan,Li Shaoyuan

Abstract

This paper investigates the multi-agent persistent monitoring problem via a novel distributed submodular receding horizon control approach. In order to approximate global monitoring performance, with the definition of sub-modularity, the original persistent monitoring objective is divided into several local objectives in a receding horizon framework, and the optimal trajectories of each agent are obtained by taking into account the neighborhood information. Specifically, the optimization horizon of each local objective is derived from the local target states and the information received from their neighboring agents. Based on the sub-modularity of each local objective, the distributed greedy algorithm is proposed. As a result, each agent coordinates with neighboring agents asynchronously and optimizes its trajectory independently, which reduces the computational complexity while achieving the global performance as much as possible. The conditions are established to ensure the estimation error converges to a bounded global performance. Finally, simulation results show the effectiveness of the proposed method.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference29 articles.

1. A Data-Driven Deployment Approach for Persistent Monitoring in Aquatic Environments;Alam,2018

2. Multi-Robot Routing for Persistent Monitoring with Latency Constraints;Asghar,2019

3. An Optimal Control Approach to the Multi-Agent Persistent Monitoring Problem;Cassandras;IEEE Trans. Automatic Control.,2012

4. Multi-Agent Reinforcement Learning for Persistent Monitoring ChenJ. BaskaranA. ZhangZ. TokekarP. 2020

5. An Approximate Dynamic Programming Approach to Multiagent Persistent Monitoring in Stochastic Environments with Temporal Logic Constraints;Deng;IEEE Trans. Automat. Contr.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3