Author:
Srihi Hajer,Guerra Thierry-Marie,Nguyen Anh-Tu,Pudlo Philippe,Dequidt Antoine
Abstract
People with spinal cord injury (SCI) suffer from a drastic reduction in sitting stability which negatively impacts their postural control. Thus, sitting balance becomes one of the most challenging everyday exercises. To better understand the consequences of this pathology, we have to work with high-sized non-linear biomechanical models implying both theoretical and numerical difficulties. The main goal being to recover unmeasured inputs, the observer should have limited or no simplification at all to provide a better estimation quality. A Proportional Integral-observer (PI-observer) is designed and its convergence is formulated by linear matrix inequalities (LMI) through convex optimization techniques. Using a unique high-sized observer, the LMI constraints problem can quickly reach current solvers limitations regarding the number of unknown parameters required. A way to solve this issue is to design a cascade observer in order to estimate the unmeasurable torques of a human with SCI. This approach consists in decomposing a biomechanical model into interconnected subsystems and to build “local” observers. The relevance of this approach is demonstrated in simulation and with real-time experimental data.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献