PM2.5 Synergizes With Pseudomonas aeruginosa to Suppress Alveolar Macrophage Function in Mice Through the mTOR Pathway

Author:

Zhang Jianlong,Liu Chong,Zhao Guangrong,Li Meng,Ma Di,Meng Qingguo,Tang Wenli,Huang Qingrong,Shi Peimin,Li Youzhi,Jiang Linlin,Yu Xin,Zhu Hongwei,Chen Guozhong,Zhang Xingxiao

Abstract

High concentrations of PM2.5 in enclosed broiler houses cause respiratory disorders in humans and animals. Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen that can induce severe respiratory disease in animals under stress or with abnormal immune functions. Alveolar macrophages are lung-resident immune cells that play important roles in lung host defence and immune balance. In this study, the mechanism by which PM2.5 synergizes with P. aeruginosa to damage alveolar macrophage function and induce inflammation was investigated. The results will provide a theoretical basis for improving the poultry breeding environment and preventing the recurrence of infection with P. aeruginosa. Alveolar macrophages were stimulated by PM2.5 collected in an enclosed broiler house and P. aeruginosa. Phagocytosis was determined by the neutral red test. The apoptosis rate and cytoskeleton changes were observed by flow cytometry assays and laser scanning confocal microscopy. Protein levels related to autophagy and the mTOR pathway were detected by Western blotting. The results indicated that PM2.5 in combination with P. aeruginosa could decrease phagocytosis, inhibit autophagy, increase apoptosis, and destroy the cytoskeleton in alveolar macrophages. In addition, alveolar macrophages had significantly increased expression of mTOR pathway-related proteins in response to the synergistic stimulation of PM2.5 and P. aeruginosa. The above results confirmed that PM2.5 in poultry houses synergized with P. aeruginosa to impede alveolar macrophage function and caused more severe respiratory system injuries through a process closely related to the activation of the mTOR signalling pathway.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3