Author:
Yang Jinfei,Li Chenrui,Liu Yan,Han Yachun,Zhao Hao,Luo Shilu,Zhao Chanyue,Jiang Na,Yang Ming,Sun Lin
Abstract
Danggui-Shaoyao-San (DSS) is one of traditional Chinese medicine, which recently was found to play a protective role in diabetic kidney disease (DKD). However, the pharmacological mechanisms of DSS remain obscure. This study would explore the molecular mechanisms and bioactive ingredients of DSS in the treatment of DKD through network pharmacology. The potential target genes of DKD were obtained through OMIM database, the DigSee database and the DisGeNET database. DSS-related targets were acquired from the BATMAN-TCM database and the STITCH database. The common targets of DSS and DKD were selected for analysis in the STRING database, and the results were imported into Cytoscape to construct a protein-protein interaction network. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis and Gene Ontology (GO) enrichment analysis were carried out to further explore the mechanisms of DSS in treating DKD. Molecular docking was conducted to identify the potential interactions between the compounds and the hub genes. Finally, 162 therapeutic targets of DKD and 550 target genes of DSS were obtained from our screening process. Among this, 28 common targets were considered potential therapeutic targets of DSS for treating DKD. Hub signaling pathways including HIF-1 signaling pathway, TNF signaling pathway, AMPK signaling pathway, mTOR signaling pathway, and PI3K-Akt signaling pathway may be involved in the treatment of DKD using DSS. Furthermore, TNF and PPARG, and poricoic acid C and stigmasterol were identified as hub genes and main active components in this network, respectively. In this study, DSS appears to treat DKD by multi-targets and multi-pathways such as inflammatory, oxidative stress, autophagy and fibrosis, which provided a novel perspective for further research of DSS for the treatment of DKD.
Subject
Pharmacology (medical),Pharmacology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献