The association between HLA-B variants and amoxicillin-induced severe cutaneous adverse reactions in Chinese han population

Author:

Wang Ting,Yang Jin,Yang Fanping,Cheng Ye,Huang Zichong,Li Bei,Yang Linlin,Xing Qinghe,Luo Xiaoqun

Abstract

BackgroundAmoxicillin (AMX) is among the most prescribed and the best tolerated antimicrobials worldwide. However, it can occasionally trigger severe cutaneous adverse reactions (SCAR) with a significant morbidity and mortality. The genetic factors that may be relevant to AMX-induced SCAR (AMX-SCAR) remain unclear. Identification of the genetic risk factor may prevent patients from the risk of AMX exposure and resume therapy with other falsely implicated drugs.MethodologyFour patients with AMX-SCAR, 1,000 population control and 100 AMX-tolerant individuals were enrolled in this study. Both exome-wide and HLA-based association studies were conducted. Molecular docking analysis was employed to simulate the interactions between AMX and risk HLA proteins.ResultsCompared with AMX-tolerant controls, a significant association of HLA-B*15:01 with AMX-SCAR was validated [odds ratio (OR) = 22.9, 95% confidence interval (CI): 1.68–1275.67; p = 7.34 × 10−3]. Moreover, 75% carriers of HLA-B*15:01 in four patients with AMX-SCAR, and the carrier frequency of 10.7% in 1,000 control individuals and 11.0% in 100 AMX-tolerant controls, respectively. Within HLA-B protein, the S140 present in all cases and demonstrated the strongest association with AMX-SCAR [OR = 53.5, p = 5.18 × 10−4]. Molecular docking results also confirmed the interaction between AMX and S140 of the HLA-B protein, thus eliminating the false-positive results during in association analysis.ConclusionOur findings suggest that genetic susceptibility may be involved in the development of AMX-SCAR in Han Chinese. However, whether the HLA-B variants observed in this study can be used as an effective genetic marker of AMX-induced SCAR still needs to be further explored in larger cohort studies and other ethnic populations.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Amoxicillin;Reactions Weekly;2024-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3