Effects of Real-Ambient PM2.5 Exposure on Lung Damage Modulated by Nrf2−/−

Author:

Ding Hao,Jiang Menghui,Li Daochuan,Zhao Yanjie,Yu Dianke,Zhang Rong,Chen Wen,Pi Jingbo,Chen Rui,Cui Lianhua,Zheng Yuxin,Piao Jinmei

Abstract

Previous studies have shown that long-term exposure to fine particulate matter (PM2.5) increases the morbidity and mortality of pulmonary diseases such as asthma, chronic obstructive pulmonary disease and pulmonary emphysema. Oxidative stress and inflammation play key roles in pulmonary damage caused by PM2.5. Nuclear factor erythroid 2-related factor 2 (Nrf2) could regulate the expression of antioxidant and anti-inflammatory genes and is pivotal for protection against PM2.5-induced oxidative stress. In this study, a real-ambient exposure system was constructed with the outdoor ambient air in north China. Wild-type (WT) and Nrf2−/− (KO) mice were exposed to the real-ambient system for six weeks. After PM2.5 exposure, our data showed that the levels of inflammatory factors and malondialdehyde were significantly increased in WT and KO mice. Moreover, the lung function and pathological phenotype of the WT mice were altered but there was no obvious change in the Nrf2−/− mice. To further explore the potential molecular mechanisms, we performed RNA-sequencing. The RNA-sequence analysis results showed that the CYP450 pathway in the first ten pathways of KEGG was related to the metabolism of PM2.5. In WT and KO mice, the expression of CYP2E1 in the CYP450 pathway showed opposite trends after PM2.5 exposure. The data showed that the expression of the CYP2E1 gene in WT-PM mice increased while it decreased in KO-PM; the expression of the CYP2E1 protein showed a similar trend. CYP2E1 is primarily distributed in the endoplasmic reticulum (ER) where it could metabolize various exogenous substances attached to PM2.5 and produce highly toxic oxidation products closely related to ER stress. Consistently, the expression level of GRP94, a biomarker of ER stress, was increased in WT mice and reduced in KO mice under PM2.5 exposure. Persistent ER stress is a mechanism that causes lung damage under PM2.5 exposure. Nrf2 facilitates lung injury during PM2.5 exposure and CYP2E1 metabolism is involved in this process.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3