Microglia: A pharmacological target for the treatment of age-related cognitive decline and Alzheimer’s disease

Author:

McKee Chloe G.,Hoffos Madison,Vecchiarelli Haley A.,Tremblay Marie-Ève

Abstract

As individuals age, microglia, the resident immune cells of the central nervous system (CNS), become less effective at preserving brain circuits. Increases in microglial inflammatory activity are thought to contribute to age-related declines in cognitive functions and to transitions toward mild cognitive impairment (MCI) and Alzheimer’s disease (AD). As microglia possess receptors for communicating with the CNS environment, pharmacological therapies targeting these pathways hold potential for promoting homeostatic microglial functions within the aging CNS. Preclinical and early phase clinical trials investigating the therapeutic effects of pharmacological agents acting on microglia, including reactive oxygen species, TREM2, fractalkine signaling, the complement cascade, and the NLRP3 inflammasome, are currently underway; however, important questions remain unanswered. Current challenges include target selectivity, as many of the signaling pathways are expressed in other cell types. Furthermore, microglia are a heterogenous cell population with transcriptomic, proteomic, and microscopy studies revealing distinct microglial states, whose activities and abundance shift across the lifespan. For example, homeostatic microglia can transform into pathological states characterized by markers of oxidative stress. Selective pharmacological targeting aimed at limiting transitions to pathological states or promoting homeostatic or protective states, could help to avoid potentially harmful off-target effects on beneficial states or other cell types. In this mini-review we cover current microglial pathways of interest for the prevention and treatment of age-related cognitive decline and CNS disorders of aging focusing on MCI and AD. We also discuss the heterogeneity of microglia described in these conditions and how pharmacological agents could target specific microglial states.

Funder

Canada Research Chairs

Canadian Institutes of Health Research

Michael Smith Health Research BC

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3