Author:
Asghar Asghar Ali,Akhlaq Muhammad,Jalil Aamir,Azad Abul Kalam,Asghar Junaid,Adeel Muhammad,Albadrani Ghadeer M.,Al-Doaiss Amin A.,Kamel Mohamed,Altyar Ahmed E.,Abdel-Daim Mohamed M.
Abstract
This study aims to increase the aqueous solubility of ciprofloxacin (CPN) to improve oral bioavailability. This was carried out by formulating a stable formulation of the Self-Emulsifying Drug Delivery System (SEDDS) using various ratios of lipid/oil, surfactant, and co-surfactant. A pseudo-ternary phase diagram was designed to find an area of emulsification. Eight formulations (F1-CPN–F8-CPN) containing oleic acid oil, silicone oil, olive oil, castor oil, sunflower oil, myglol oil, polysorbate-80, polysorbate-20, PEO-200, PEO-400, PEO-600, and PG were formulated. The resultant SEDDS were subjected to thermodynamic study, size, and surface charge studies to improve preparation. Improved composition of SEDDS F5-CPN containing 40% oil, 60% polysorbate-80, and propylene glycol (Smix ratio 6: 1) were thermodynamically stable emulsions having droplet size 202.6 nm, charge surface -13.9 mV, and 0.226 polydispersity index (PDI). Fourier transform infra-red (FT-IR) studies revealed that the optimized formulation and drug showed no interactions. Scanning electron microscope tests showed the droplets have an even surface and spherical shape. It was observed that within 5 h, the concentration of released CPN from optimized formulations F5-CPN was 93%. F5-CPN also showed a higher antibacterial action against S. aurous than free CPN. It shows that F5-CPN is a better formulation with a good release and high antibacterial activity.
Funder
Princess Nourah Bint Abdulrahman University
King Khalid University
Subject
Pharmacology (medical),Pharmacology