Euphorbia Factor L2 ameliorates the Progression of K/BxN Serum-Induced Arthritis by Blocking TLR7 Mediated IRAK4/IKKβ/IRF5 and NF-kB Signaling Pathways

Author:

Tang Jing,Cheng Xiaolan,Yi Shiyu,Zhang Yuanyuan,Tang Zhigang,Zhong Yutong,Zhang Qiuping,Pan Bin,Luo Yubin

Abstract

Toll like receptor (TLR)s have a central role in regulating innate immunity and their activation have been highlighted in the pathogenesis of rheumatoid arthritis (RA). EFL2, one of diterpenoids derived from Euphorbia seeds, is nearly unknown expect for its improving effect on acute lung injury. Our present study aimed to investigate EFL2’s pharmacokinetic features, its therapeutic effect on rheumatoid arthritis, and explored the potential anti-arthritic mechanisms. K/BxN serum transfer arthritis (STA) murine model was used to assess EFL2’s anti-arthritic effects. We also applied UPLC-MS method to measure the concentrations of EFL2 in plasma. The inhibitory effects of this compound on inflammatory cells infiltration and activation were determined by flow cytometry analysis and quantitative real-time polymerase chain reaction (qRT-PCR) in vivo, and immunochemistry staining and ELISA in murine macrophages and human PBMCs in vitro, respectively. The mechanism of EFL2 on TLRs mediated signaling pathway was evaluated by PCR array, Western blot, plasmid transfection and confocal observation. Intraperitoneal (i.p.) injection of EFL2, instead of oral administration, could effectively ameliorate arthritis severity of STA mice. The inflammatory cells migration and infiltration into ankles were also significantly blocked by EFL2, accompanied with dramatically reduction of chemokines mRNA expression and pro-inflammatory cytokines production. In vivo PCR microarray indicated that EFL2 exerted anti-arthritis bioactivity by suppressing TLR7 mediated signaling pathway. In vitro study confirmed the inhibitory effects of EFL2 on TLR7 or TLR3/7 synergistically induced inflammatory cytokines secretion in murine macrophages and human PBMCs. In terms of molecular mechanism, we further verified that EFL2 robustly downregulated TLR7 mediated IRAK4-IKKβ-IRF5 and NF-κB signaling pathways activation, and blocked IRF5 and p65 phosphorylation and translocation activity. Taken together, our data indicate EFL2’s therapeutic potential as a candidate for rheumatoid arthritis and other TLR7-dependent diseases.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3