Based on Network Pharmacology and Gut Microbiota Analysis to Investigate the Mechanism of the Laxative Effect of Pterostilbene on Loperamide-Induced Slow Transit Constipation in Mice

Author:

Yao Zhiwei,Fu Siqi,Ren Bingbing,Ma Lushun,Sun Daqing

Abstract

Background: Pterostilbene (PTE) is a natural polyphenol compound that has been proven to improve intestinal inflammation, but its laxative effect on slow transit constipation (STC) has never been studied. This study aims to investigate the laxative effect of PTE on loperamide (LOP)-induced STC mice and its influence on intestinal microbes through a combination of network pharmacological analysis and experimental verification.Material and Methods: PTE was used to treat LOP-exposed mice, and the laxative effect of PTE was evaluated by the total intestinal transit time and stool parameters. The apoptosis of Cajal interstitial cells (ICCs) was detected by immunofluorescence. The mechanism of PTE’s laxative effect was predicted by network pharmacology analysis. We used western blot technology to verify the predicted hub genes and pathways. Malondialdehyde (MDA) and GSH-Px were tested to reflect oxidative stress levels and the changes of gut microbiota were detected by 16S rDNA high-throughput sequencing.Results: PTE treatment could significantly improve the intestinal motility disorder caused by LOP. Apoptosis of ICCs increased in the STC group, but decreased significantly in the PTE intervention group. Through network pharmacological analysis, PTE might reduce the apoptosis of ICCs by enhancing PI3K/AKT and Nrf2/HO-1 signaling, and improve constipation caused by LOP. In colon tissues, PTE improved the Nrf2/HO-1 pathway and upregulated the phosphorylation of AKT. The level of MDA increased and GSH-Px decreased in the STC group, while the level of oxidative stress was significantly reduced in the PTE treatment groups. PTE also promoted the secretion of intestinal hormone and restored the microbial diversity caused by LOP.Conclusion: Pterostilbene ameliorated the intestinal motility disorder induced by LOP, this effect might be achieved by inhibiting oxidative stress-induced apoptosis of ICCs through the PI3K/AKT/Nrf2 signaling pathway.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3