Selective inhibitor of sodium-calcium exchanger, SEA0400, affects NMDA receptor currents and abolishes their calcium-dependent block by tricyclic antidepressants

Author:

Boikov Sergei I.,Karelina Tatiana V.,Sibarov Dmitry A.,Antonov Sergei M.

Abstract

The open-channel block of N-methyl-D-aspartate receptors (NMDARs) and their calcium-dependent desensitization (CDD) represent conventional mechanisms of glutamatergic synapse regulation. In neurotrauma, neurodegeneration, and neuropathic pain the clinical benefits of cure with memantine, ketamine, Mg2+, and some tricyclic antidepressants are often attributed to NMDAR open-channel block, while possible involvement of NMDAR CDD in the therapy is not well established. Here the effects of selective high-affinity sodium-calcium exchanger (NCX) isoform 1 inhibitor, SEA0400, on NMDA-activated whole-cell currents and their block by amitriptyline, desipramine and clomipramine recorded by patch-clamp technique in cortical neurons of primary culture were studied. We demonstrated that in the presence of extracellular Ca2+, 50 nM SEA0400 caused a reversible decrease of the steady-state amplitude of NMDAR currents, whereas loading neurons with BAPTA or the removal of extracellular Ca2+ abolished the effect. The decrease did not exceed 30% of the amplitude and did not depend on membrane voltage. The external Mg2+ block and 50 nM SEA0400 inhibition of currents were additive, suggesting their independent modes of action. In the presence of Ca2+ SEA0400 speeded up the decay of NMDAR currents to the steady state determined by CDD. The measured IC50 value of 27 nM for SEA0400-induced inhibition coincides with that for NCX1. Presumably, SEA0400 effects are induced by an enhancement of NMDAR CDD through the inhibition of Ca2+ extrusion by NCX1. SEA0400, in addition, at nanomolar concentrations could interfere with Ca2+-dependent effect of tricyclic antidepressants. In the presence of 50 nM SEA0400, the IC50s for NMDAR inhibition by amitriptyline and desipramine increased by about 20 folds, as the Ca2+-dependent NMDAR inhibition disappeared. This observation highlights NCX1 involvement in amitriptyline and desipramine effects on NMDARs and unmasks competitive relationships between SEA0400 and these antidepressants. Neither amitriptyline nor desipramine could affect NCX3. The open-channel block of NMDARs by these substances was not affected by SEA0400. In agreement, SEA0400 did not change the IC50 for clomipramine, which acts as a pure NMDAR open-channel blocker. Thus, NCX seems to represent a promising molecular target to treat neurological disorders, because of the ability to modulate NMDARs by decreasing the open probability through the enhancement of their CDD.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3