Author:
Liu Zhi-Hai,Wang Wei-Mei,Zhang Zhen,Sun Liang,Wu Shuai-Cheng
Abstract
The emergence and spread of antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), underly the urgent need to develop novel antibacterial drugs. Macleaya cordata, a traditional medicinal plant, has been widely used in livestock animals, plants, and humans. Alkaloids are the primary bioactive compounds of Macleaya cordata and exhibit antibacterial, antiinflammatory, and antioxidant activities. Nevertheless, the antibacterial compounds and mode of action of Macleaya cordata remain unclear. In the present study, we investigated the antibacterial activity and mode of action of alkaloids from Macleaya cordata. Sanguinarine, 6-ethoxysanguinarine (6-ES), 6-methoxydihydrosanguinarine (6-MS), chelerythrine (CH), and dihydrochelerythrine (DICH) exhibited good antibacterial activity against Gram-positive bacteria, including MRSA. 6-ES rapidly killed MRSA, possibly by interfering with membrane and metabolic functions including ROS production by targeting the membrane and FtsZ in S. aureus. Additionally, 6-ES directly suppressed the hemolytic activity of α-hemolysin, alleviated inflammatory responses, and eliminated intracellular MRSA, as well as displayed low development of drug resistance, in vitro. Finally, a 6-ES-loaded thermosensitive hydrogel promoted wound healing in mice infected with MRSA. These results supported 6-ES as a novel potential candidate or leading compound with antibacterial, antivirulence, and host immunomodulatory activities in fighting against bacterial infections.
Funder
National Natural Science Foundation of China
Qingdao Agricultural University
Natural Science Foundation of Shandong Province
Subject
Pharmacology (medical),Pharmacology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献