Design, synthesis, molecular docking, and molecular dynamic studies of novel quinazoline derivatives as phosphodiesterase 7 inhibitors

Author:

El-Malah Afaf A.,Gineinah Magdy M.,Khayat Maan T.,Aljahdali Anfal S.,Safar Marwa M.,Almazmumi Hadeel A.,Khinkar Roaa M.

Abstract

Introduction: Phosphodiesterase 7 (PDE7) is a high-affinity cyclic AMP (cAMP)-specific PDE that is expressed in immune and proinflammatory cells. In this work, we explore the possibility that selective small molecule inhibitors of this enzyme family could provide a novel approach to alleviate the inflammation that is associated with many inflammatory diseases.Methods: A series of novel substituted 4-hydrazinoquinazoline derivatives and fused triazoloquinazolines were designed, synthesized, and evaluated in vitro for their PDE7A inhibition activities, in comparison with Theophylline, a non-selective PDE inhibitor, and BRL50481, a selective PDE7A inhibitor. This series of novel quinazoline derivatives were synthesized via multi-step reactions. The reaction sequence began with selective monohydrazinolysis of compounds 2a,b to give 3a,b. Schiff bases 4a-h were synthesized by the reaction of the quinazolylhydrazines 3a,b with various substituted aromatic aldehydes. The reaction of 4a-h with bromine in acetic acid, in turn, gave fused triazoloquinazolines 5a-h. These compounds were characterized by satisfied spectrum analyses mainly including 1HNMR, 13CNMR, and MS together with elemental analyses.Results and discussion: The results of in vitro PDE7A inhibition activity clearly indicated that compounds 4b, 4g, 5c, and 5f exhibited good potency. Molecular docking and molecular dynamic simulation studies further supported our findings and provided the basis of interaction in terms of conventional hydrogen bonds and π-π stacking patterns. The present results lay the groundwork for developing lead compounds with improved phosphodiesterase seven inhibitory activities.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3