Investigation of the mechanism of the anti-cancer effects of Astragalus propinquus Schischkin and Pinellia pedatisecta Schott (A&P) on melanoma via network pharmacology and experimental verification

Author:

Wang Fang,Bai Juan,Li Feng,Liu Jing,Wang Yanli,Li Ning,Wang Yaqi,Xu Jin,Liu Wanbao,Xu Liting,Chen Lin

Abstract

Melanoma is a commonly malignant cutaneous tumor in China. Astragalus propinquus Schischkin and Pinellia pedatisecta Schott (A&P) have been clinically used as adjunctive drugs in the treatment of malignant melanoma. However, the effect and mechanism of A&P on melanoma have yet to be explored. The current investigation seeks to characterize the active components of A&P and their potential roles in treating malignant melanoma using network pharmacology and in vitro and in vivo experiments. We first used the traditional Chinese medicine systems pharmacology (TCMSP) database and high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) to identify a total of 13 effective compounds within A&P. 70 common genes were obtained by matching 487 potential genes of A&P with 464 melanoma-related genes, and then we built up protein-protein interaction (PPI) network of these 70 genes, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The results revealed that A&P might influence the pathobiology of melanoma through the PI3K/Akt pathway. Molecular docking also confirmed that higher content of ingredients in A&P, including hederagenin, quercetin, beta-sitosterol and stigmasterol, had a strong binding activity (affinity < −5 kcal/mol) with the core targets AKT1, MAPK3 and ESR1. Furthermore, we confirmed A&P could inhibit melanoma cells proliferation and induce cells apoptosis through suppressing the PI3K/Akt signaling pathway by in vitro and in vivo xenograft model experiments. These findings indicate that A&P may function as a useful therapy for melanoma through the PI3K/Akt pathway.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3