Garlic ameliorates atherosclerosis by regulating ferroptosis pathway: an integrated strategy of network pharmacology, bioinformatic and experimental verification

Author:

Gao Tingting,Gao Siqi,Wang Heng,Wang Shule,Li Lizheng,Hu Jie,Yan Sheng,Zhang Ruijing,Zhou Yun,Dong Honglin

Abstract

BackgroundAtherosclerosis (AS) is a chronic arterial pathology and a leading cause of vascular disease-related mortality. Fatty streaks in the arterial wall develop into atherosclerosis and characteristic plaques. Clinical interventions typically involve lipid-lowering medications and drugs for stabilizing vulnerable plaques, but no direct therapeutic agent specifically targets atherosclerosis. Garlic, also locally known as DASUAN, is recognized as a widely sold herbal dietary supplement esteemed for its cardiovascular benefits. However, the specific mechanisms of garlic’s anti-atherosclerotic effects remain unclear.AimsThis study aims to elucidate the pharmacological mechanisms through which garlic ameliorates atherosclerosis.MethodsThe study identified the major active components and targets of garlic by screening the TCMSP, TCM-ID, and, ETCM databases. Atherosclerosis-associated targets were obtained from the DisGeNET, GeneCards, and DiGSeE databases, and garlic intervention targets were determined through intersection. Utilizing the intersected genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using R software. A garlic component-disease target network was constructed using Cytoscape. RNA-seq datasets from the GEO database were utilized to identify differentially expressed genes (DEGs) associated with atherosclerosis. The target genes were intersected with DEGs and the FerrDb (ferroptosis database). Molecular docking predicted the binding interactions between active components and the core targets. In vitro and in vivo experiments validated the identified core targets.ResultsThe integration of garlic drug targets with atherosclerotic disease targets identified 230 target genes. Intersection with RNA-seq DEGs revealed 15 upregulated genes, including 8 target genes related to ferroptosis. Molecular docking indicated favorable affinities between garlic active components [Sobrol A, (+)-L-Alliin, Benzaldoxime, Allicin] and target genes (DPP4, ALOX5, GPX4). Experimental validation showed that GARLIC reduces the expression of ferroptosis-related genes in AS, suggesting its therapeutic potential through the regulation of ferroptosis.ConclusionGarlic ameliorates atherosclerosis by targeting intra-plaque ferroptosis and reducing lipid peroxidation. These findings provide novel insights into the pharmacological mechanisms underlying the efficacy of garlic in treating AS.

Funder

National Natural Science Foundation of China

Shanxi Provincial Science and Technology Department

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3