Optimal Indicator of Death for Using Real-World Cancer Patients' Data From the Healthcare System

Author:

Jang Suk-Chan,Kwon Sun-Hong,Min Serim,Jo Ae-Ryeo,Lee Eui-Kyung,Nam Jin Hyun

Abstract

Background: Information on patient’s death is a major outcome of health-related research, but it is not always available in claim-based databases. Herein, we suggested the operational definition of death as an optimal indicator of real death and aim to examine its validity and application in patients with cancer.Materials and methods: Data of newly diagnosed patients with cancer between 2006 and 2015 from the Korean National Health Insurance Service—National Sample Cohort data were used. Death indicators were operationally defined as follows: 1) in-hospital death (the result of treatment or disease diagnosis code from claims data), or 2) case wherein there are no claims within 365 days of the last claim. We estimated true-positive rates (TPR) and false-positive rates (FPR) for real death and operational definition of death in patients with high-, middle-, and low-mortality cancers. Kaplan−Meier survival curves and log-rank tests were conducted to determine whether real death and operational definition of death rates were consistent.Results: A total of 40,970 patients with cancer were recruited for this study. Among them, 12,604 patients were officially reported as dead. These patients were stratified into high- (lung, liver, and pancreatic), middle- (stomach, skin, and kidney), and low- (thyroid) mortality groups consisting of 6,626 (death: 4,287), 7,282 (1,858), and 6,316 (93) patients, respectively. The TPR was 97.08% and the FPR was 0.98% in the high mortality group. In the case of the middle and low mortality groups, the TPR (FPR) was 95.86% (1.77%) and 97.85% (0.58%), respectively. The overall TPR and FPR were 96.68 and 1.27%. There was no significant difference between the real and operational definition of death in the log-rank test for all types of cancers except for thyroid cancer.Conclusion: Defining deaths operationally using in-hospital death data and periods after the last claim is a robust alternative to identifying mortality in patients with cancer. This optimal indicator of death will promote research using claim-based data lacking death information.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3