Exploring the mechanism of Suanzaoren decoction in treatment of insomnia based on network pharmacology and molecular docking

Author:

Wang Shuxiao,Zhao Yan,Hu Xingang

Abstract

Objective: To explore the functional mechanisms of Suanzaoren decoction (SZRD) for treating insomnia using network pharmacology and molecular docking.Methods: The active ingredients and corresponding targets of SZRD were obtained from the Traditional Chinese Medicine Systems Pharmacology database, and then, the names of the target proteins were standardized using the UniProt database. The insomnia-related targets were obtained from the GeneCards, DisGeNET, and DrugBank databases. Next, a Venn diagram comprising the drug and disease targets was created, and the intersecting targets were used to draw the active ingredient-target network diagram using Cytoscape software. Next, the STRING database was used to build a protein-protein interaction network, followed by cluster analysis using the MCODE plug-in. The Database for Annotation, Visualization, Integrated Discovery (i.e., DAVID), and the Metascape database were used for Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. AutoDock Vina and Pymol software were used for molecular docking.Results: SZRD contained 138 active ingredients, corresponding to 239 targets. We also identified 2,062 insomnia-related targets, among which, 95 drug and disease targets intersected. The GO analysis identified 490, 62, and 114 genes related to biological processes, cellular components, and molecular functions, respectively. Lipid and atherosclerosis, chemical carcinogen-receptor activation, and neuroactive ligand-receptor interaction were the most common pathways in the KEGG analysis. Molecular docking demonstrated that the primary active components of SZRD for insomnia had good binding capabilities with the core proteins in PPI network.Conclusion: Insomnia treatment with SZRD involves multiple targets and signaling pathways, which may improve insomnia by reducing inflammation, regulating neurotransmitters.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3