Author:
Arshad Tahreem,Shoaib Khan Haji Muhammad,Khan Kashif-ur-Rehman,Al-Roujayee Abdulaziz S.,Mohany Mohamed,Ahmad Maqsood,Maryam Sana,Akram Muhammad Bilal,Shaukat Hasnain,Khursheed Umair,Aboul-Soud Mourad A. M.
Abstract
The bioactive extracts of traditional medicinal plants are rich in polyphenols and help to rejuvenate skin. The study was designed to assess the skin rejuvenating effects of a stable cream enriched with 4% I. argentea (IaMe) extract. The quantity of polyphenols by spectrophotometric methods was TPC, 101.55 ± 0.03 mg GAE/g and total flavonoid content; 77.14 ± 0.13 mg QE/g, while HPLC-PDA revealed gallic acid; 4.91, chlorogenic acid 48.12, p-coumaric acid 0.43, and rutin 14.23 μg/g. The significant results of biological activities were observed as DPPH; 81.81% ± 0.05%, tyrosinase; 72% ± 0.23% compared to ascorbic acid (92.43% ± 0.03%), and kojic acid (78.80% ± 0.19%) respectively. Moreover, the promising sun protection effects Sun protection factor of extract (20.53) and formulation (10.59) were observed. The active cream formulation (w/o emulsion) was developed with liquid paraffin, beeswax, IaMe extract, and ABIL EM 90, which was stable for 90 days as shown by various stability parameters. The rheological results demonstrated the active formulation’s non-Newtonian and pseudo-plastic characteristics and nearly spherical globules by SEM. The IaMe loaded cream was further investigated on human trial subjects for skin rejuvenating effects and visualized in 3D skin images. Herein, the results were significant compared to placebo. IaMe formulation causes a substantial drop in skin melanin from −1.70% (2 weeks) to −10.8% (12 weeks). Furthermore, it showed a significant increase in skin moisture and elasticity index from 7.7% to 39.15% and 2%–30%, respectively. According to the findings, Indigofera argentea extract has promising bioactivities and skin rejuvenating properties, rationalizing the traditional use and encouraging its exploitation for effective and economical cosmeceuticals.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献