Preclinical characterization of tunlametinib, a novel, potent, and selective MEK inhibitor

Author:

Liu Yahong,Cheng Ying,Huang Gongchao,Xia Xiangying,Wang Xingkai,Tian Hongqi

Abstract

Background: Aberrant activation of RAS-RAF-MEK-ERK signaling pathway has been implicated in more than one-third of all malignancies. MEK inhibitors are promising therapeutic approaches to target this signaling pathway. Though four MEK inhibitors have been approved by FDA, these compounds possess either limited efficacy or unfavorable PK profiles with toxicity issues, hindering their broadly application in clinic. Our efforts were focused on the design and development of a novel MEK inhibitor, which subsequently led to the discovery of tunlametinib.Methods: This study verified the superiority of tunlametinib over the current MEK inhibitors in preclinical studies. The protein kinase selectivity activity of tunlametinib was evaluated against 77 kinases. Anti-proliferation activity was analyzed using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) or (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay. ERK and phospho-ERK levels were evaluated by Western blot analysis. Flow cytometry analysis was employed to investigate cell cycle and arrest. Cell-derived xenograft (CDX) and Patient-derived xenograft (PDX) models were used to evaluate the tumor growth inhibition. The efficacy of tunlametinib as monotherapy treatment was evaluated in KRAS/BRAF mutant or wild type xenograft model. Furthermore, the combination studies of tunlametinib with BRAF/KRASG12C/SHP2 inhibitors or chemotherapeutic agent were conducted by using the cell proliferation assay in vitro and xenograft models in vivo.Results:In vitro, tunlametinib demonstrated high selectivity with approximately 19-fold greater potency against MEK kinase than MEK162, and nearly 10–100-fold greater potency against RAS/RAF mutant cell lines than AZD6244. In vivo, tunlametinib resulted in dramatic tumor suppression and profound inhibition of ERK phosphorylation in tumor tissue. Mechanistic study revealed that tunlametinib induced cell cycle arrest at G0/G1 phase and apoptosis of cells in a dose-proportional manner. In addition, tunlametinib demonstrated a favorable pharmacokinetic profile with dose-proportionality and good oral bioavailability, with minimal drug exposure accumulation. Furthermore, tunlametinib combined with BRAF/KRASG12C/SHP2 inhibitors or docetaxel showed synergistically enhanced response and marked tumor inhibition.Conclusion: Tunlametinib exhibited a promising approach for treating RAS/RAF mutant cancers alone or as combination therapies, supporting the evaluation in clinical trials. Currently, the first-in-human phase 1 study and pivotal clinical trial of tunlametinib as monotherapy have been completed and pivotal trials as combination therapy are ongoing.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3